Investor Presentaiton slide image

Investor Presentaiton

Model assessment City Lon Lat (a) NSE under RCP45 Dunhuang (b) NSE under RCP85 94.71 40.13 Gaotai 99.84 Dunhuang 0.81 0.80 0.86 0.87 0.80 0.83 39.14 Dunhuang 0.81 0.80 0.83 0.83 0.80 0.84 0.9 Jiayuguan 98.28 39.78 0.9 Gaotai 0.86 0.84 0.87 0.90 0.85 0.87 Jiuquan Gaotai 0.86 0.84 0.84 0.88 98.5 0.84 0.89 39.71 0.8 Lanzhou 103.73 0.8 36.03 Jiayuguan 0.30 0.10 0.40 0.34 0.25 0.22- Tianshui Jiayuguan 0.16 0.41 0.33 0.19 0.23- 105.69 34.6 0.7 0.7 Wuwei 102.61 37.94 Jiuquan 0775 0.75 0.80 0.80 0.81 0.80 Jiuquan 0.75 0.77 0.77 0.80 0.81 Yumen 97.58 39.81 0.6 0.6 Zhangye 100.46 38.93 Lanzhou -0.64 0.58 0.70 0.62 0.65- Lanzhou 0.59 0.57 0.67 0.69 0.59 0.65- Xian 108.95 34.27 0.5 0.5 Tianshui 0.55 0.54 0.63 0.63 0.57 0.58- Wuwei 0.69 0274 0.77 Yumen 0.49 0.42 0.57 Under both RCP45 and RCP85, models have best performances in Dunhuang and Gaotai, and least in Jiayuguan and Zhangye 074 0.77 Xian. Generally, IPSL performs the best for all cities under both RCP45 and RCP85. Models have different performance for different cities. Xian 0.29 02 0.34 0.37 0.30 ACCESS1 CNRM Figure 5. The NSE between different modelled and satellite-based NDVI in different cities under RCP4.5 and RCP8.5. Tianshui 0.49 0.51 0.61 0.59 0.55 0.58 0.4 0.4 0.77 0.77 0.76- Wuwei 0.70 0.77 0.78 0.3 0.3 0.59 0.49 0.50 Yumen 0.47 0.44 0.2 0.81 0.82 0.81 0.81 bcc MPI IPSL GFDL Zhangye 173 0.76 0.77 0.1 0.35 Xian 0.31 0.17 0.33 0 bcc MPI IPSL GFDL CNRM ACCESS1 0.53 0.54 0.49 0.50 0.2 0.78 0.79 0.81 0.1 0.40 0.26 0.29- 0
View entire presentation