Absci Investor Presentation Deck slide image

Absci Investor Presentation Deck

model from absci import de_novo_model de_novo_model.load_latest() antigen model.load_pdb("7olz.pdb", chain="A") antibodies = model.predict(antigen, N=300000) DRUG CREATION absci. from absci_library import codon_optimizer library CORPORATE PRESENTATION SEPTEMBER 2023 ABSCI CORPORATION 2023 ALL RIGHTS RESERVED = codon_optimizer.reverse_translate(library) library.to_csv("covid-antibody-designs.csv") from absci import lead_opt_model lead_optimizer = lead_opt_model.load_latest() library.naturalness = lead_optimizer.naturalness(library) library.to_wet_lab(assay="ACE") lead_optimizer.optimize(library).to_wet_lab(as say="SPR") from absci import genetic_algorithm; parameters=["maximizelbinding_affinity:pH=7.5", "minimizelbinding_affinity: pH-6.0", "maximize l human_naturalness"]; library = genetic_algorithm.multiparametric_optimization (library, parameters, evolutions=100); library.to_wet_lab(assays=["ACE", "SPR", "Bioassays"])
View entire presentation