Rigetti SPAC Presentation Deck slide image

Rigetti SPAC Presentation Deck

Superconducting quantum computers have the most qubits, the lowest error rates¹, and are scaling the fastest Progress in scaling universal gate-model quantum computing systems by hardware modality: 2011 to 2021 Qubit Count 80 60 40 20 0 2011 2021 Example key players per modality: I T 2011 2021 lons 7-12 Superconducting 2-6 Google IBM rigetti Honeywell IONQ JPL Note Graph includes largest demonstration of systems to date by 2011 and by 2021 that are universal and compatible with generic quantum algorithms 1 Best estimated two-qubit gate fidelity as of June 2021 on systems larger than two qubits are 99.8% (median) on 53Q for superconducting³, 99.5% (typical) on 10Q for ions", 98.9% (typical) on 12Q for photons¹6 and 97.4% (averaged) on 10Q for atoms. 20 In order as appear on the graph: 2 DiCarlo, L., et al. "Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit." Nature, vol. 467, no. 7315, Sept. 2010, pp. 574-78. arXiv.org, doi:10.1038/nature09416. 3 Neeley, M., et al. "Generation of Three-Qubit Entangled States Using Superconducting Phase Qubits." Nature, vol. 467, no. 7315, Sept. 2010, pp. 570- 73. arXiv.org, doi:10.1038/nature09418. 4 rigetti.com, June 2021. 5 Arute, Frank, et al. "Quantum Supremacy Using a Programmable Superconducting Processor." Nature, vol. 574, no. 7779, Oct. 2019, pp. 505-10. www.nature.com, doi:10.1038/s41586-019-1666-5. 6 Zhang, Eric J., et al. "High-Fidelity Superconducting Quantum Processors via Laser-Annealing of Transmon Qubits." ArXiv:2012.08475 [Quant-Ph], Dec. 2020. arXiv.org. 7 Benhelm, J., et al. "Towards Fault-Tolerant Quantum Computing with Trapped lons." Nature Physics, vol. 4, no. 6, June 2008, pp. 463-66. arXiv.org, doi:10.1038/nphys961. 8 Monz, Thomas, et al. "14-Qubit Entanglement: Creation and Coherence." Physical Review Letters, vol. 106, no. 13, Mar. 2011, p. 130506. arXiv.org, doi:10.1103/PhysRevLett.106.130506. 9 "Quantum Computer." Honeywell. 10 Wright, K., et al. "Benchmarking an 11-Qubit Quantum Computer." Nature Communications, vol. 10, no. 1, Nov. 2019, p. 5464. www.nature.com, doi:10.1038/s41467-019-13534-2. 11 Egan, Laird, et al. "Fault-Tolerant Operation of a Quantum Error-Correction Code." ArXiv:2009.11482 [Quant-Ph], Jan. 2021. arXiv.org. 12 Pogorelov, Ivan, et al. "A Compact lon-Trap Quantum Computing Demonstrator." ArXiv:2101.11390 [Quant-Ph], June 2021. arXiv.org. 13 Okamoto, Ryo, et al. "Realization of a Knill-Laflamme-Milburn Controlled-NOT Photonic Quantum Circuit Combining Effective Optical Nonlinearities." Proceedings of the National Academy of Sciences, vol. 108, no. 25, June 2011, pp. 10067-71. www.pnas.org, doi:10.1073/pnas.1018839108. 14 Crespi, Andrea, et al. "Integrated Photonic Quantum Gates for Polarization Qubits." Nature Communications, vol. 2, no. 1, Nov. 2011, p. 566. www.nature.com, doi:10.1038/ncomms1570. 15 Qiang, Xiaogang, et al. "Large-Scale Silicon Quantum Photonics Implementing Arbitrary Two-Qubit Processing." Nature Photonics, vol. 12, no. 9, Sept. 2018, pp. 534-39. arXiv.org, doi:10.1038/s41566-018-0236-y. 16 Taballione, Caterina, et al. "A 12-Mode Universal Photonic Processor for Quantum Information Processing." ArXiv:2012.05673 [Physics, Physics:Quant-Ph], Dec. 2020. arXiv.org. 17 Arrazola, J. M., et al. "Quantum Circuits with Many Photons on a Programmable Nanophotonic Chip." Nature, vol. 591, no. 7848, Mar. 2021, pp. 54-60. arXiv.org, doi:10.1038/s41586-021-03202-1. 18 Wilk, T., et al. "Entanglement of Two Individual Neutral Atoms Using Rydberg Blockade." Physical Review Letters, vol. 104, no. 1, Jan. 2010, p. 010502. arXiv.org, doi:10.1103/PhysRevLett. 104.010502. 19 Madjarov, Ivaylo S., et al. "High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms." Nature Physics, vol. 16, no. 8, Aug. 2020, pp. 857-61. arXiv.org, doi:10.1038/s41567-020-0903-z. 20 Levine, Harry, et al. "Parallel Implementation of High-Fidelity Multi-Qubit Gates with Neutral Atoms." Physical Review Letters, vol. 123, no. 17, Oct. 2019, p. 170503. arXiv.org, doi:10.1103/PhysRevLett.123.170503. universität innsbruck 2011 2021 22 Photons 13-17 PsiQuantum XANADU 2011 QUIX 2021 Atoms FRUTAS 18-20 rigetti
View entire presentation