Investor Presentaiton slide image

Investor Presentaiton

16.0°S With WTA concept, we addressed insurance premiums to cover users' losses as mitigation mechanisms on climate change** and aging infrastructure, extending works to strategic, but vulnerable river basins strongly dependant on water footprints for hydropower, food production and water supply in Southeast Brazil São Carlos - São Paulo, Bra 70000 Rio Claro São Paulo, Brazil o Campinas - São Paulo, Brazil o 60000 Impacts standard deviation "o" (US$): Eta-MROC 9661x10 Eta-HadGEM 8020x10 Impacts standard deviation "o" (US$): Eta-MROC 12483x10 Eta-HadGEM 7790x105 São Paulo. Santos - São Paulo, Brazil 50000 Hydrological Processes RESEARCH ARTICLE Season-based rainfall-runoff modelling using the probability- distributed model (PDM) for large basins in southeastern Brazil Rong Zhang, Luz Adriana Cuartas, Luiz Valerio de Castro Carvalho, Karinne Reis Deusdará Leal, Eduardo Mário Mendiondo, Narumi Abe, Stephen Birkinshaw, Guilherme Samprogna Mohor, Marcelo Enrique Seluchi, Carlos Afonso Nobre First published: 20 May 2018 | https://doi.org/10.1002/hyp.13154 48.0°W 18.0°S- Emborcação 46.0°W Três Marias 20.0°S 22.0°S- 48.0°W 47.0°W Cantareira 46.0°W 46.5°W Furnas 44.0°W 42.0°W BA 16.0°S Impacts 10°US$ 40000 30000 20000 10000 a. 0 000 Cantareira Impacts standard deviation "o" (US$): Eta-MROC 16552x106 Eta-HadGEM 11950x10 Source: Guzmán et al (2017) Eta-MIROCS 2007-2040 Eta-HadGEM 2007-2040 Eta-MIROCS 2041-2070 Eta-HadGEM 2041-2070 Eta-MIROCS 2071-2099 Eta-HadGEM 2071-2099 DOO Furnas AAA Emborcação ooo Três Marias (a) 1000 ooo Mascarenhas WET TST DRY YEAR (b) 100 80 18.0°S 800 60 MG Mascarenhas ES 20.0°S Legend • Climatological stations (INME Rain gauges (ANA) Qsim (mm/year) ŏg 40 600 400 Qerr (%) 20 0 -20 -40 200 -60 22.0°S -80 Rain gauges (INMET) Rain gauges (CEMADEN) 0 -100 Rain gauges (DAEE) 200 400 600 800 1000 CT EB 100 100 km Hydroelectric stations (ONS) Qobs (mm/year) TM FN MC Basins Dams (DAEE) 44.0°W 42.0°W 46.0°W Principal rivers Reservoirs ** Projected economical impacts of climate change on water utility company revenue from a 2800-km2 supply system, in Southeast Brazil (Sao Paulo Metropolitan Region), show great range of possibilities for trading off and for developing adaptation strategies of Ecosystem-based Adaptation (EbA) with Payment for Ecosystem Services (PES) supporting WTA insurance. 9
View entire presentation